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Scientific Progress: 

The Integration of Perception-Action Systems with Systems that Reason Abstractly: 

Because perception action systems are necessarily constrained by the physics of time and space, 
robotocists often assume they are best described using differential equations, a language that is 
specialized for describing the evolution of variables that represent physical quantities. However, 
when it comes to decision making, where the representation envolved refer to goals, stratiges and 
preferences, AI offers a diverse range of formalisms to the modeler. However, the relationship 
between these two levels of representation — signal and symbol — are not well understood. If 
we are to achieve success in modelling intelligent physical agents, robotics and AI must reach a 
new consensus on how to integrate perception-action systems with systems designed for abstract 
reasoning. Research towards this end is described in reference [1] by Bajcsy and Large. 

Novel Vision Sensors that Approximate Wide-Angle Perspective Projections: 

Reference [2] by Hicks and Bajcsy, present two families of reflective surfaces that are cabable of 
providing a wide field of view, and yet still approximate a perspective projection to a high degree. 
These surfaces are derived by considering a plane perpendicular to the axis of the surface of revo- 
lution and finding the equations governing the distortion of the image of the plane in this surface. 
We then view this relation as a differential equation and prescribe the distortion term to be linear. 
By choosing appropriate initial conditions for the differential equation and solving it numerically, 
we derive the surface shape and obtain a precise estimate as to what degree the the resulting sensor 



can approximate a perspective projection. Thus, these surfaces act as computational sensors, al- 
lowing for a wide-angle perspective view of a scene without processing the image in software. The 
applications of such a sensor should be numerous, including surveillance, robotics, and traditional 
photography. 
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When and Where Will AI 
Meet Robotics? 
Issues in Representation 

Ruzena Bajscy and Edward W. Large 

■ Because perception-action systems are necessarily 
constrained by the physics of time and space, 
robotodsts often assume they are best described 
using differential equations, a language that is spe- 
cialized for describing the evolution of variables 
that represent physical quantities. However, when 
it comes to decision making, where the represen- 
tations involved refer to goals, strategies, and pref- 
erences, AI offers a diverse range of formalisms to 
the modeler. However, the relationship between 
these two levels of representation—signal and 
symbol—are not well understood. If we are to 
achieve success in modeling intelligent physical 
agents, robotics and AI must reach a new consen- 
sus on how to integrate perception-action systems 
with systems designed for abstract reasoning. 

In the early days of AI, robotics was an inte- 
gral part of our research effort. All our major 
AI laboratories had research programs in 

robotics in the late 1960s and early 1970s. 
However by the 1980s, robotics had taken its 
own course separate from the core activities of 
AI. One might argue that such a split was 
inevitable, a natural result of specialization in 
a rapidly growing and maturing field such as 
ours, but in our pursuit of rational models of 
the mind, do we dare leave the body behind? 

What is responsible for the divergence 
between these two fields that once were so inti- 
mately intertwined? Can AI and robotics ever 
be reunited, and if so, what would a new part- 
nership look like? At the core, we believe, is the 
ubiquitous issue of representation. There is an 
enormous difference between dealing with 
physical systems that operate in our everyday 
environment and software systems that reside 
in various abstract worlds. This gap has led to 
divergence in many areas, including the fol- 
lowing: 

The problems: Robotics problems entail sys- 

tems and agents interacting with the physical 
world, but AI deals mostly with abstract prob- 
lems that lend themselves to symbolic repre- 
sentations. 

The environment: Roboticists seek to 
design systems that function in physical envi- 
ronments that are always changing and intrin- 
sically unpredictable. Software agents generally 
operate in human-designed worlds where one 
can have some measure of control over change 
or at least an a priori knowledge of the possibil- 
ities. 

The tools: AI more commonly uses discrete 
mathematics, but robotics and machine per- 
ception make use of continuous mathematics. 
These tools also differentiate the typical educa- 
tional background that characterizes the two 
areas: AI has more computer scientists, but 
robotics has more electrical and mechanical 
engineers. 

The evaluation criteria: AI researchers seem 
to value novelty more, solving "hard" prob- 
lems, showing existence of solutions, and so 
forth. Robotics, however, follows traditional 
engineering evaluation criteria: efficiency, reli- 
ability, accuracy of performance, and economy 
of the solution. 

We admit that these divisions might be 
overexaggerated because in both fields, one 
can find counterexamples to the previous 
statements. Nevertheless, each of these points 
speaks to the differences one encounters when 
dealing with corporeal agents in the physical 
world versus software agents in cyberspace. 
Robotics concentrates most of its resources on 
modeling perception and action. Often, differ- 
ential equations are used to embody relatively 
simple strategies for controlling hardware 
effectors based on sensory information. AI, 
however, emphasizes planning and abstract 
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Figure 1. The Autonomous Agent. 
The TRC platf orm serves as a mobile base. A stereo camera pair mount- 
ed on the front of the rig is used for obstacle detection. A third camera 
mounted on a pan platform is used for target detection and tracking. 

reasoning. For example, logical, grammatical, 
or other discrete formalisms are used to model 
the complex operations involved in winning a 
chess match or parsing a sentence. 

What seems clear is that as robotic agents 
are called on to perform increasingly complex 
tasks, they will be required not only to react 
flexibly in dynamically changing environ- 
ments but also to make decisions, reason 
abstractly, and change perceptual or behav- 
ioral strategies. Conversely, as intelligent soft- 
ware agents are required to operate more and 
more on human terms, responding to sensory 

information and interacting physically with 
humans, they will be required to integrate 
more sophisticated perception-action capabili- 
ties with their abstract reasoning abilities. In 
addition, although each of these areas has 
been well studied, in robotics and AI respec- 
tively, the integration of perception-action sys- 
tems with reasoning systems is less well under- 
stood. Thus, there is a great need to reconsider 
the relationship between AI and robotics. 

The Problem of Representation 
We will explore the issue that we believe is key 
to this relationship, the issue of representa- 
tion. Representation is critical, especially when 
one considers how to find a description that is 
compact, yet expressive enough to enable the 
modeling of intelligent physical agents. What 
kind of mathematical tools are available to us? 
At the signal level, modeling of perception- 
action (reactive) behaviors can be anchored in 
differential equations and control theory, both 
linear and nonlinear. At the symbol level, 
higher-level control derives its models either 
from geometry (typically used in robotics) or 
from logics and rule-based systems such as are 
favored in the AI planning community. If time 
needs to be explicitly accounted for, then there 
are other tools available. At the signal level, 
time is implicit in the model of the reactive 
behaviors (for example, using differential 
equations). At the symbol level, discrete states 
are generally considered, and these can be 
modeled using discrete-event systems; tempo- 
ral logics; and, at an even higher level, fluents. 
If uncertainty and disturbances must be mod- 
eled, then one must bring to bear stochastic 
models and probability theory; partially 
observable Markov decision models is one 
such example. Finally, utility functions and 
cost-benefit trade-offs come to play in con- 
junction with game theory, optimization, 
selection of strategies, and complexity consid- 
erations. Examples of such approaches as they 
have been applied to robotics are presented in 
Alami et. al. (1998); Clementia, Di Felice, and 
Hernandez (1997); Conn (1995); Russell and 
Subramanian (1995); and Sandewall (1994). 
Hybrid system approaches such as discussed in 
Arkin (1998), Brockett (1993), Dickmanns 
(1997), Nagel and Haag (1998), Nerode and 
Remmel (1991), and Ramadge and Wonham 
(1987) combine discrete systems with lower- 
level control systems. However, the use of all 
these mathematical tools is predicated on the 
assumption that label assignment (the seg- 
mentation of the sensory or control signals) is 
performed externally to the system. 

58    AI MAGAZINE 



Articles 

Discrete-Event System  Competitive Dynamic System 
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Figure 2. Two Approaches to Decision Making and Behavioral Sequencing. 
In the discrete-event system, the discrete states of a finite-state machine correspond to control of perception-action by a dis- 
tinct control law (0=Fstate (0,4*)). Transitions between states are governed by guard conditions on perceptual variables (for 
example, y). In the competitive dynamic system, each state variable (for example, w) controls the weighting of a task con- 
straint at the signal level. Behavior is shaped directly by the competitive dynamic system, 0 = F(0, W, HO, as the symbol- 
level system activates and deactivates attractor and repellor contributions to the behavioral dynamics. As perceptual parame- 
ters (for example, v) change, bifurcations cause qualitative changes in perception-action behavior. 

Signal and Symbol 
In our view, the main unsolved problem is 
how to segment the continuous signal into 
states, strategies, labels, and so forth, and how 
to arbitrate among states for effective interac- 
tion with the environment (for example, Shi 
and Malik [1998], Tari, Shah, and Pien [1997], 
and Large, Christensen, and Bajscy [1999]). In 
the GRASP Laboratory, we have concerned 
ourselves with the problem of representation 
in signal-symbol systems over the past several 
years. One approach to this problem involves 
the study of intelligent physical agents, agents 
that can operate in the physical world with all 
its uncertainty yet behave intelligently, mak- 
ing decisions about how best to perform sim- 
ple and complex tasks in a range of real-world 
environments. A picture of one such agent is 
shown in figure 1. It consists of a TRC LABMATE 

mobile platform equipped with a stereo cam- 
era pair used for obstacle detection; a third 
camera mounted on a turntable for visual 
tracking; and several computers used for pro- 
cessing sensory signals, generating control sig- 
nals, and making decisions. 

The control system that models perception- 
action behavior transforms visual input into 
control signals to enable the physical agent to 
carry out various navigation tasks. We use a 
dynamic system approach proposed by Schon- 
er, Dose, and Engels (1996). In this approach, 
behavior is controlled by differential equations 
that describe the rate of change of behavioral 
variables, such as heading direction and veloc- 
ity. At any instant in time, the values of these 
variables describe the agent's behavior. Over 
time, the dynamic system generates a series of 
values, controlling the behavior of the agent. 
Our dynamic system has the form 
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Although 
the dynamic 

control system 
provides a 

great deal of 
flexibility, it 

can only 
model one 
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action 
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Complex 

tasks, 
however, 
typically 

require the 
execution of 
sequences of 

behavior. 

D®/dt = F(®,^) (1) 
where 0 = [c|> v]T is a vector of behavioral vari- 
ables, heading direction, and velocity and is a 
vector of variables that represent perceptual 
information, such as direction to the target 
and size of obstacles. An example of such a 
function is shown in figure 2 (bottom panel). 
Three faed points can be seen in the figure as 
points where the value of ft©,1?) is zero (that 
is, d$ldt = 0, so heading direction is fixed). If 
the slope of the function around a fixed point 
is positive, the value of the behavioral variable 
is pushed away from this value by the action of 
equation 1; such an unstable fixed point is 
called a repellor. If the slope of the function is 
negative, it is a stable fixed point, called an 
attractoT, because the behavioral variable is 
pulled toward this value by the differential 
equation. 

The behavior of the agent is controlled by 
the configuration of attractors and repellors: 
Desired actions (such as moving toward a tar- 
get) are modeled as attractors, and undesired 
actions (such as moving toward an obstacle) 
are modeled as repellors of the perception- 
action dynamic system. Task constraints deter- 
mine the mapping from perceptual informa- 
tion to behavioral attractors and repellors. If 
the task is to go to the desk, the action of mov- 
ing toward the desk is modeled an attractor, 
but other objects are considered obstacles 
(modeled as repellors). However, if the task is 
to rendezvous with another agent, then the 
action of moving toward the other agent is an 
attractor, and the desk is treated as an obstacle, 
and moving toward it is to be avoided. Thus, 
viewed as a representation of a perception- 
action behavior, this dynamic system incorpo- 
rates task knowledge and makes use of percep- 
tual information. 

As the values of the perceptual variables 
change, the attractor-repellor layout changes. 
For example, if a target moves, the location of 
the corresponding attractor will move as well, 
thus providing behavioral flexibility—behav- 
ior adapts to accommodate changes in the 
environment. An even greater measure of flex- 
ibility is provided by bifurcations in the dynam- 
ic system—qualitative changes in the layout of 
attractors and repellors caused by changes in 
parameter values. For example, when a new 
obstacle comes into view, a repellor forms 
where there was no repellor before. 

Although the dynamic control system pro- 
vides a great deal of flexibility, it can only 
model one relatively simple perception-action 
behavior at a time. Complex tasks, however, 
typically require the execution of sequences of 
behavior. For example, one agent might need 

to rendezvous with an agent and then proceed 
toward a target location. To perform such tasks 
in a complex environment requires sequenc- 
ing several simpler perception-action strate- 
gies. Building on the previous signal-level rep- 
resentation, we have investigated two 
approaches to modeling decision making and 
sequence generation: (1) a discrete-event-system 
approach and (2) a competitive dynamic system 
approach. There are three key differences 
between these two approaches: (1) the model 
of how the symbol level interfaces with the sig- 
nal level, (2) the model of how perception is 
integrated into the decision-making process, 
and (3) the model of how decisions are cap- 
tured at the symbol level. 

Before describing each approach in detail, 
we summarize the differences between the two 
systems; in figure 2. In the discrete-event- system 
approach (Kosecka 1996), the symbol level 
interfaces with the signal level by realizing dis- 
tinct behaviors as separate dynamic systems 
(that is, fsate, middle left panel); these are con- 
ceived of as elementary perception-action 
strategies. At any particular time, the behavior 
of the agent is governed by one of these equa- 
tions. Decision making and sequencing are 
modeled at the symbol level using a finite-state 
machine (FSM) (top left panel). Individual FSM 
states correspond to elementary signal-level 
behaviors; when in a particular state, behavior 
is governed by a corresponding signal-level 
dynamic system. The arcs linking states are 
labeled with discrete events (for example, a > 
0) that summarize perceptual information. The 
perceptual system generates these events, 
which correspond to qualitatively different 
conditions in the environment. The occur- 
rence of a specific event causes the switch from 
one state to another, modeling the decision to 
execute a different perception-action behavior. 
Thus, sequences of behavior are generated by 
traversing the arcs, which is, in turn, governed 
by the conditions on the current situation. 

The competitive dynamic system model is for- 
mulated entirely within the qualitative theory 
of dynamic systems. Both signal-level control 
and symbol-level decision making are modeled 
using differential equations (Large, Chris- 
tensen, and Bajscy 1999). However, the com- 
petitive dynamic system interfaces with the sig- 
nal level differently than the discrete-event 
system. Rather than defining multiple elemen- 
tary perception-action behaviors, a single mas- 
ter equation is defined containing all possible 
task constraints (middle right panel, figure 2). 
Then, each variable in the symbol-level system 
controls the weighting of a task constraint at 
the signal level, such that the symbol-level sys- 
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Figure 3. Finite-State Machine (FSM) Models for Simple and Complex Behaviors. 
A. An FSM for elementary behavior GoTo. The control law (fCoTo) is repeatedly invoked in the next state until suc- 
cessful (arrival at the goal) or unsuccessful (for example, detection of a spurious attractor) termination. 
B. Finite-state model for a navigation behavior. Failure of GoTo is followed by the elementary behavior Escape. Once 
the agent clears the obstruction, GoTo is invoked again. This more complex behavior is able to handle a large variety 
of navigation situations. 

tem can activate and deactivate attractor and 
repellor contributions to the behavioral 
dynamics. Different behaviors are modeled as 
fixed points (stable weight configurations) in 
the competitive dynamic system. The environ- 
ment determines the values of the system para- 
meters. As the perceptual information changes, 
parameters change, causing bifurcations in the 
symbol-level system (top right panel, figure 2), 
modeling the decision to cease executing one 
behavior and execute another instead. This 
approach differs from the discrete-event 
approach because the properties of dynamic 
systems, such as stability, bifurcations, and hys- 

teresis, govern decision making and sequence 
generation. 

Discrete-Event Systems 
The discrete-event approach models elemen- 
tary perception-action strategies as behavioral 
atoms, and each elementary control law is 
associated with a state in a simple finite-state 
machine. We define the composition operators 
for the FSMs by imposing some additional 
structure. The set of final states of an elemen- 
tary behavior is partitioned into a set of suc- 
cessful and unsuccessful final states. By utiliz- * 
ing these primitives, it is possible to build 
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Figure 4. Bifurcations in a Competitive Dynamic System for Decision Making. 

Two bifurcation diagrams are shown, one corresponding to each dimension of a two-dimensional system for system navigation. It is 
assumed that Ytal.obs = Yobs tar= °-5-A- 'rhe state vanaDle w0bs determines the weighting of fat. B. The state variable wobs determines the 
weighting of fob^. Four qualitatively different behaviors, corresponding to four fixed points of the competitive dynamics, are shown. 
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models of more complex tasks, which are 
described as sequences of behavioral atoms. By 
using a task-specification language, complex 
FSMs are synthesized by sequencing simpler 
automata. 

The FSM model of an elementary GoTo 
strategy is shown in figure 3a. A signal-level 
perception-action behavior is repeatedly 
invoked in the next state until the agent reach- 
es the desired target location and makes a tran- 
sition to the final state. If the strategy fails, the 
transition to the unsuccessful final state is 
made. As an example of a composition of ele- 
mentary behaviors, consider the problem of 
moving to a target location while avoiding 
obstacles. In simple environments, one ele- 
mentary perception-action behavior, GoTo, 
might do the trick. However, in complex envi- 
ronments with multiple obstacles arrayed in 
difficult configurations, our agent might get 
stuck in an area and never reach the target 
location (Large, Christensen, and Bajscy 1999). 
We address this problem by adding an Escape 
behavior that enables the agent to find its way 
out of enclosures and other spatial traps. The 
FSM for this behavior is shown in figure 3b. We 
assume that the fail signal to the GoTo behav- 
ior is generated whenever the agent detects an 
enclosure from which it must escape. When 
the fail signal is generated, the FSM enters the 
unsuccessful final state, and a transition is 
made to the initial state of Escape. When 
Escape terminates (when the agent has cleared 
the obstruction), the GoTo behavior resumes. 
The navigation task terminates successfully 
when the agent reaches the target location. 

Competitive Dynamic Systems 
The competitive dynamic system strategy 
models individual behaviors as the stable fixed 
points of a decision-making dynamic system. 
This system interacts with the signal level not 
by invoking separate elementary behaviors but 
by directly shaping perception-action strate- 
gies. The variables of the competitive dynamic 
system determine the weighting of the task 
constraints in the behavioral dynamic system. 
This interface between the two levels allows 
the decision-making system to activate and 
deactivate attractors and repellors in the per- 
ception-action system, synthesizing control 
laws on the fly. Thus, qualitatively different 
configurations of the weights give rise to dis- 
tinct perception-action behaviors. In addition, 
distinct weight configurations, which arise as 
attractors in the competitive dynamic system, 
are functionally equivalent to the FSM states of 
the discrete-event system. 

Decisions are made through bifurcations in 

the competitive dynamic system, and as with 
any dynamic system, bifurcations are caused 
by changes in the values of the system parame- 
ters. The decision-making system uses two 
types of parameter: (1) competitive advantage 
and (2) competitive interaction. These parame- 
ters are tied to perceptual information, so that 
decisions are made on the basis of the environ- 
ment as sensed by the agent. First, each weight 
has an associated competitive advantage that 
describes whether the corresponding task con- 
straint (for example, move toward target, 
avoid obstacles) is appropriate to the agent's 
current situation. For example, if obstacles are 
nearby, the Obstacles constraint will have a 
strong competitive advantage, but if the target 
is also in view, the Target constraint also has a 
strong advantage. The activation of both con- 
straints simultaneously corresponds to the ele- 
mentary GoTo behavior of the discrete-event 
system earlier. Competitive interaction describes 
the extent to which each constraint is consis- 
tent or inconsistent other constraints. For 
example, if the agent finds itself enclosed in an 
area with the target just beyond, the competi- 
tive interaction between the Obstacles and the 
Target constraints would increase so that the 
Target constraint would be deactivated tem- 
porarily, allowing the agent to escape from the 
enclosure. Deactivation of the target con- 
straint corresponds to the Escape behavior of 
the discrete-event system. 

We can understand in detail how these para- 
meters interact to determine the behavior of 
the agent by constructing a bifurcation dia- 
gram such as that in figure 4. The bifurcation 
diagram shows the layout of fixed points for a 
two-dimensional system (that is, weights for 
the Target and Obstacles constraints) as a func- 
tion of the perceptual parameters. In the fig- 
ure, the competitive advantage parameters are 
varied from 0 to 1, assuming that the two com- 
petitive interaction parameters remain fixed at 
0.5. Four qualitatively different regions (and, 
thus, behaviors) are pictured. Activation of 
both constraints corresponds to the GoTo 
behavior described earlier, but activation of 
the Obstacles constraint only corresponds to 
the Escape behavior. 

Beginning in the front left corner of the 
parameter space, only the Obstacles constraint 
contributes to the behavioral dynamics (the 
Escape behavior). Moving to the right, as Tar- 
get's advantage increases beyond 0.5, both Tar- 
get and Obstacles constraints contribute to 
shape perception-action behavior (the GoTo 
behavior). As we next decrease the advantage 
of Obstacles, moving to the back left region, ^ 
Obstacles is deactivated, but Target is activat- 

Intelligent 
agents must 
be capable of 
bringing to 
bear a rich 
variety of per- 
ception-action 
strategies but, 
at the same 
time, reason- 
ing and solv- 
ing problems 
to perform 
both familiar 
and unfamil- 
iar tasks in 
novel environ- 
ments. 
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ed. If we once again decrease Target, moving 
toward the back left region of the parameter 
space, we notice that Obstacles remains inac- 
tive, but Target remains active. This last region 
of the state space is different from the others. 
Two behaviors are stable in this region. How- 
ever, the system can only occupy one of these 
states at any given time. In this case, the state 
of the system is determined by its recent histo- 
ry, a phenomenon known as hysteresis. Finally, 
the boundaries of the four regions are deter- 
mined by the values of the competitive inter- 
action parameters. When competitive interac- 
tions change, the relative sizes of the different 
stable regions change as well. Each of these dif- 
ferent regions corresponds to the execution of 
a qualitatively different perception-action 
behavior. 

Comparing Approaches 
We tested the two systems described previous- 
ly to evaluate their relative performance in 
autonomous navigation tasks (Large, Chris- 
tensen, and Bajscy 1999). We vary environ- 
mental complexity by constructing environ- 
ments with different numbers of obstacles 
arranged in various configurations. We also 
vary task complexity; for example, a single 
agent performs simple navigation, or a pair of 
agents performs a cooperative task. In a range 
of tests, dynamic agents perform tasks faster 
and more reliably than discrete-event agents. 
They are able to maintain higher mean veloci- 
ties, finding targets faster and with lower fail- 
ure rates than discrete-event agents. However, 
the discrete-event agents also have advantages. 
They obey task constraints more faithfully, 
reluctant to relax constraints regardless of 
environmental complexity. These differences 
are the result of the model of decision making. 
The symbol-level dynamic system changes 
state less often than the discrete-event system, 
especially in the face of a noisy sensor reading. 
Although our experiments are not yet conclu- 
sive, by comparing modeling strategies in a 
careful way, we are gaining important insights 
into the special requirements of systems that 
must manipulate both signals and symbols at 
the same time and toward the same goal. 

Conclusions 
Early in the history of AI, many researchers 
came to believe that perception and action 
could be modeled by relatively simple trans- 
duction mechanisms, and therefore, abstract 
reasoning and problem solving were the diffi- 
cult issues worthy of study. More recently, it 
has been argued that complex representation 

and reasoning might be unnecessary because 
many apparently intelligent behaviors can be 
modeled as perception-action systems situated 
in the physical world. Unfortunately, we have 
come to view both points of view as somewhat 
simplistic. Intelligent agents must be capable 
of bringing to bear a rich variety of perception- 
action strategies but, at the same time, reason- 
ing and solving problems to perform both 
familiar and unfamiliar tasks in novel environ- 
ments. 

In this regard, the study of intelligent phys- 
ical agents and their behavior is of tremendous 
theoretical and practical significance in AI. Not 
only are there a vast number of real-world 
applications where autonomous agents can be 
useful, but models of intelligent physical 
agents can serve as valuable starting points for 
theories of intelligent biological systems. The 
question that we ask is how to integrate mod- 
els of perception-action behavior with models 
of problem-solving behavior. 

Although we do not yet have the answer, we 
have two requirements for any solution: First, 
the description of the physical agent should 
take place within a structured framework that 
supports both analysis and theory making. 
Thus, we are allowed to develop design 
methodologies for artificial agents as well as 
develop rational theories of biological agents. 
Furthermore, any methodology that we pro- 
pose should be compositional, allowing man- 
ageable and flexible system design through 
decomposition of complex problems or behav- 
iors into subparts. Both of our systems meet 
these requirements. Finally, it is necessary to 
carefully compare the assumptions brought to 
bear by different strategies as we learn to mod- 
el intelligent behavior in the real world. 

What are the special requirements of sys- 
tems that must interact with the physical 
world and also reason and solve problems? It is 
this question that must be addressed before we 
can claim a theory of intelligent physical 
agents and before AI and robotics can be 
reunited. 
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Abstract Convex mirror 

We present two families of reflective surfaces that are 
capable of providing a wide field of view, and yet still ap- 
proximate a perspective projection to a high degree. These 
surfaces are derived by considering a plane perpendicular to 
the axis of a surface of revolution and finding the equations 
governing the distortion of the image of the plane in this sur- 
face. We then view this relation as a differential equation 
and prescribe the distortion term to be linear. By choos- 
ing appropriate initial conditions for the differential equa- 
tion and solving it numerically, we derive the surface shape 
and obtain a precise estimate as to what degree the result- 
ing sensor can approximate a perspective projection. Thus 
these surfaces act as computational sensors, allowing for a 
wide-angle perspective view of a scene without processing 
the image in software. The applications of such a sensor 
should be numerous, including surveillance, robotics and 
traditional photography. 

Recently, many researchers in the robotics and vision 
community have begun to consider visual sensors that are 
able to obtain wide fields of view. Such devices are the nat- 
ural solution to various difficulties encountered with con- 
ventional imaging systems. 

The two most common means of obtaining wide fields of 
view are fish-eye lenses and reflective surfaces, also known 
as catoptrics. When catoptrics are combined with conven- 
tional lens systems, known as dioptrics, the resulting sen- 
sors are known as catadioptrics. The possible uses of 
these systems include applications such as robot control and 
surveillance. In this paper we will consider only catadiop- 
tric based sensors. Often such systems consist of a camera 
pointing at a convex mirror, as in figure (1). 

How to interpret and make use of the visual informa- 
tion obtained by such systems, e.g. how they should be 
used to control robots, is not at all obvious. There are in- 
finitely many different shapes that a mirror can have, and 
at least two different camera models (perspective and or- 
thographic projection) with which to combine each mirror. 

Camera 

Figure 1. The generic setup of the type of sen- 
sor that we consider in this paper. 

The properties of the resulting sensors are very sensitive to 
these choices. 

The classic need for wide angle lenses has, of course 
been in photography. In particular, underwater and archi- 
tectural photography are two examples in which having a 
wide-angle lens is often crucial. The commercially avail- 
able lens with the widest field of view (without radial dis- 
tortion) that the authors are aware of is the Nikon 13mm 
f/5.6 Nikkor AIS, which provides a field of view of 118 
degrees at a cost of $(US) 12000. Note that our prototype 
orthographic sensor provides a field of view of 142 degrees. 

1   Related work 

In the past few years, there has been a tremendous in- 
crease in research on the design and applications of cata- 
dioptric based sensors. Much of this work has been focused 
on designing sensors with a panoramic or wide field of view 
(see [16], [10], [13], [17], [9], [7] [11],[18] [3], [19], [15], 
[12], [14], [4], [8],[1], [6]). 

In [14], Nayar describes a true omni-directional sensor. 
In this case, the goal was to reconstruct perspective views. 
This sensor uses a parabolic mirror, which is essentially the 
only shape from which one can do a perspective unwarping 
of die image when using a camera that is well modeled by 
an orthographic projection (see [1]). 

A different use of catadioptric sensors is an application 



of Mouadddib and Pegard [15]. In this case a conical mirror 
is used to estimate a robot's pose. This is done using verti- 
cal lines in the world as landmarks, which appear as radial 
lines in the image. If the positions of these landmarks are 
known, then they can be used to estimate the robot's pose. 
In contrast to [14], in this work the authors use their device 
as a 2D sensor. The effect of noise on computing a robot's 
position by measuring the angles between known landmarks 
is investigated in [2]. Navigation and map building with a 
mobile robot using a conical mirror is considered by Yagi et 
al in [19] and [18]. 

In [4], Chahl and Srinivasan describe a means of esti- 
mating range by moving a panoramic sensor, based on the 
fact that the local distortion of the image is range depen- 
dent. This method, which gives a range estimate in every 
azimuthal direction, is implemented using a conical mirror. 

The work most related to this paper is [6] and [5]. In 
[6], Conroy and Moore derive a family of mirrors for which 
the resolution in the image is invariant to changes in eleva- 
tion. In [5] the authors exhibit a family of reflective surfaces 
that preserve a linear relationship between the angle of inci- 
dence of light onto a surface and the angle of reflection onto 
the imaging device. 

Finally, we should point out that a preliminary form of 
this work is [8]. In this work the very same mirrors are 
discussed that we consider here. There is a major difference 
though, namely that at that point the authors were unaware 
that these mirrors approximated perspective projections in 
general, i.e. we believed that they only would unwarp the 
single plane that they were modeled on. It was after this 
work that the authors noticed this property experimentally 
and proved the approximation that appears below. 

Äini* 

Figure 2. Here we see a panoramic sensor on 
a floor surrounded by 8.5 inch square sheets 
of paper. 

Figure 3. On the left we see a checkerboard 
scene similar to the one in figure (2), but now 
from the viewpoint of a catadioptric sensor 
consisting of a spherical mirror and a stan- 
dard camera that gives an approximate per- 
spective projection. On the right the view- 
point of a sensor that uses a parabolic mir- 
ror coupled with a camera that gives an ap- 
proximate orthographic projection. (This sys- 
tem was purchased from Cyclovision Inc.) 
In each case, the mirrors are approximately 
thirty centimeters above the ground. Notice 
how the size of the squares decreases as a 
function of their distance from the camera 
and that the distortion caused by the spheri- 
cal mirror is much greater than the distortion 
caused by the parabolic mirror. 

2   Contributions 

In figure (2) we see a scene consisting of a checkerboard 
pattern spread out on the floor around a panoramic sensor. 
Images of this scene (and different, but similar scenes) taken 
from sensors using spherical and parabolic mirrors appear 
in figure (3). It is clear that the distortion caused by the 
spherical mirror is greater than that caused by the parabolic 
mirror. 

In this paper we present a class of sensors that provide a 
wide field of view with a perspective-like projection with- 
out any processing in software. In particular, it is possible 
to create a mirror that does not distort the checkerboard at 
all, other than by a chosen scaling factor. Images taken from 
such a sensor appear in figures (4) and (5). The key to find- 
ing the shape of this mirror is to write down the relationship 
between the equation of the mirror and how it distorts the 
checkerboard. This equation will contain the derivative of 
the function describing a cross section of the mirror, and 
may be considered as a means for finding the distortion if 
the mirror shape is given. On the other hand it can be con- 
sidered as a differential equation in the shape of the mir- 
ror if the distortion function is given. By prescribing the 



Figure 4. On the right we see a checkerboard 
scene (like that in figure (2), but with fewer 
checkers) from the viewpoint of a sensor that 
employs a new type of mirror. The shape 
of this mirror was determined by numerically 
solving a non-linear differential equation. In 
this image, the mirror is approximately thirty 
centimeters above the checkerboard pattern, 
just as the spherical and parabolic mirrors 
were in figure (3). On the left we see the mir- 
ror that was used to obtain this image. 

Figure 5. An image taken with a catadioptric 
sensor employing a pinhole mirror. 

distortion to be linear and solving the differential equation 
numerically, data points describing the cross section were 
generated, which were then used to make prototypes out 
of steel or aluminum on a CNC lathe or mill. The cost of 
making each of these prototypes was approximately $ (US) 
700.00. 

3   Prescribing the Distortion 

In this section we derive the an equation that leads to the 
construction of one of the two different types of mirrors. 
One model is based on the perspective projection and the 
other based on an orthographic projection. For this reason 
we will refer to the two mirrors as the "pinhole mirror" and 
the "orthographic mirror". The pinhole mirror is more nat- 
ural in the sense that the pinhole camera is a good model for 
the imaging devices used in many applications. On the other 
hand, an orthographic projection is not difficult to achieve 
using the appropriate optics, and the mathematics associ- 
ated with it is often simpler than for the pinhole model. We 
will omit the perspective model for reasons of space. 

It is clear from figure (3) that if an object is on the floor, 
then the planar distance from the optical axis of the cam- 
era to any visible point of the object that touches the floor 
is a monotonic function of the pixel distance in the image. 
Therefore we have a distance function d, which takes pixel 
distances in the image and returns real world distances in 
the plane. It can also be seen from figure (3) that the dis- 
tance function is rapidly increasing and approaches infinity 
as the horizon line is approached. It seems natural then to 

consider whether the mirror shape could be altered so that 
the distance function would be linear (or some other desired 
function), as is indicated in figure (6). We will refer to any 
such mirror with a linear distance function as a rectifying 
mirror. 

We begin by deriving the equation for d for an arbitrary 
mirror. Consider an orthographic camera pointing up at a 
curved mirror, as is schematically depicted in figure (7). 
Here we see a cross section of the system, which is all 
we need consider since the mirror is rotationally symmet- 
ric. Our goal is to find an expression for d(x) given the 
equation of the cross section of the mirror, F, and a point 
whose distance from the optical axis is x in the image plane. 

From the diagram we have that tan(ö) = F'(x), so that 

tan(20) = xif Ajli • On the other hand the diagram im- 

plies that tan(20) = d^a. Thus we have the equation 

2F'(x)        d{x)-x 
1 - F'(x)2        F(x) (1) 

There are two ways to view equation (1). The first is 
what we just described above, i.e. if one knows F, it may 
be substituted into the above equation to determine d(x), 
which is how the curves in figure (6) were computed. On 
the other hand, one could choose d(x) and then consider (1) 
to be a differential equation satisfied by F. If we solve this 
differential equation, then the resulting mirror will have d as 
its distance function. It is important to note though, that at 
this point we know only that this property holds only in the 
one chosen plane, and does not other parallel planes. The 
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Figure 7. A schematic diagram of a catadiop- 
tric sensor that uses a camera modeled with 
an orthographic projection 

Figure 6. Plots of the distance functions for a 
conical mirror, a spherical mirror, and a recti- 
fying mirrors, which we define as any mirror 
whose distance function is linear. Notice that 
the distance function for the conical mirror 
grows very linearly at first, but does not start 
at 0 cm, i.e. it omits a region of the plane 
surrounding the sensor. 

The units of both axes are centimeters 

Figure 8. The cross section of the ortho- 
graphic mirror used to create the image in 
figure (9). 

reason for this is that the collection of rays that pass through 
two planes and reflect off of the mirror onto the image plane 
cannot be extended through the mirror to meet at a single 
point, i.e. the correspondence between the planes is not a 
perspective mapping. This point is discussed in more detail 
below. 

A natural choice for the distance function is d(x) = ax 
in equation (1). Considered as an differential equation, (1) 
is non-linear and numerical methods are called for. For our 
prototype orthographic mirror we chose a radius of 1.85 
centimeters, d(x) = 54a; and the initial value F(0) = 34. 
Hence the field of view was arctan((54 • 1.85)/34)) ~ 142 
degrees. The resulting cross section can be seen in figure 
(8). 

In figure (9) we see an image taken using a mirror cre- 
ated from the cross-section depicted in figure (8). (As is 
evident from this example, the prototypes were of low op- 
tical quality, and the authors hope to have superior versions 
of them made in the future.) The images presented earlier, 
in figures (4) and 5) are from a perspective mirror. 

4   Approximating Perspective Projections 

Our above model was derived by considering how the 
sensor transformed a single plane, which we will always re- 
fer to as the floor. While for both the pinhole mirror and the 
orthographic mirror it is clear from experiments and simu- 
lations that planes perpendicular to the optical axis will be 
scaled by a constant, it is possible to show mathematically 
that with the properly chosen parameters, these mirrors will 
actually approximating a perspective projection to a high 
degree. In this section we derive the approximation for the 
orthographic mirror. 

At first it may appear that a rectifying mirrors should 
only scale planes and not distort them, but in fact they do 
both distort them a little. In order to see how an arbitrary 
plane, P, is imaged, we need to know how P is mapped 
to the floor. If it is to be proportionally imaged, i.e. only 
transformed by a scale factor, then it must be transformed 
onto the floor by a scaling factor. For this to occur, the 
light rays that are entering the sensor by reflecting off of the 
mirror must have the property that, when extended beyond 
the mirror, they all intersect in a common point (see figure 



Figure 9. The image of two collections of 
checkers from two different distances. Here 
the sensor was placed on the edge of a table 
top, and one pattern of checkers was placed 
around its base on the table while another lay 
on the floor next to the table. 

(10)), i.e. there needs to be a single "effective viewpoint" 
for the sensor. Such a point does not exist for our two types 
of sensors, because, as is shown in [14], the only two cata- 
dioptric sensors with this property are the parabola coupled 
with an orthographic projection and the hyperbola coupled 
with a pinhole projection. Finally, we know that our sur- 
faces are not paraboloids and hyperboloids, because as can 
be checked, parabolas and hyperbolas are not solutions to 
the appropriate differential equations. 

We can demonstrate why the orthographic mirror gives 
a perspective-like projection by computing exactly how 
points in P are scaled onto the floor. In figure (11) we see 
that a point in P with distance d' from the optical axis is 
mapped to a point of distance d(x), which in turn is mapped 
to a point in the image plane of distance x from the optical 
axis. We suppose that the distance between the two planes 
is r and the height of the mirror is F(0). Then clearly 

Fix) 
d(x) -x     d' - d(x)' 

from which it follows that 

rd(x) -rx + F(x)d(x) 
F(x) 

d'{x) = 

(2) 

(3) 

Recall that d(x) = ax in our model, where generally we 
think of alpha as large (a is 54 for our prototype). Hence 

These lines do not intersect 
in a common point. 

Figure 10. 

,,.         (r-£ + F(s))d(s) 
d{x) = _  (4) 

Since we generally consider alpha to be large, we have 
the approximation 

'W-T^W (5) 

For our prototype orthographic mirror, F(0) was chosen 
to be 34 cm, and x varied from 0 to 1.85 cm. The maximum 
value of F occurs at x = 1.85 cm with F(1.85) = 34.85 
cm. Thus for that mirror F(0) ~ F(x), which gives our 
final approximation: 

d! 
r + F(0) 

F(0) 
d(x). (6) 

This last equation implies that this particular ortho- 
graphic mirror will approximate a perspective projection 
with a pinhole placed at (0, F(0)). 

Finally, for the purpose of comparison, it would be ideal 
if it was possible to compare images obtained from the or- 
thographic mirror with an image taken with a lens providing 
the same field of view. As mentioned above, the widest pos- 
sible field that can be obtained from a commercially avail- 
able lens is 118 degrees. Thus, a simulation is a reasonable 
way to perform such a comparison. For this we used the 
Persistence of Vision raytracer, which will simulate a pin- 
hole camera with any given field of view1. 

Consider the image in figure (12). In this scene we see 
a desk with some familiar objects. A pair of spheres are 
floating above the desk and to the right of the table a por- 
tion of a large box is visible. There are a number of other 

'The desk scene by Tom Price and Dan Farmer and the teapot by 
Alexander Enzmann are both POV-Ray sample files. 
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Figure 11. We consider a single ray of light 
passing through a plane P and then the floor. 
The goal is to derive an approximation to 
show that planes other than the floor map 
onto the floor by scaling. 

Figure 12. Here we see a scene created with 
the POV-Ray raytracer. In addition to the fa- 
miliar objects on the desks are many blue 
spheres, only two of which are visible in this 
image. To the right of the desk can be seen 
the edge of a large box. The camera has a 
field of view of 67 degrees. 

blue spheres to the left of the two that are visible, but these 
cannot be seen because the field of view is only 67 degrees. 
This image is formed by using a perspective projection. 

In figure (13) we see the same scene imaged with the 
orthographic mirror. The mirror has been placed in the same 
position as the camera was when figure (12) was created. 
The table top objects on the table are relatively undistorted, 
as is the box, now fully visible on the left. Since the field 
of view has been increased, we can now see all of the blue 
spheres and the entire box. 

In figure (14) we see the same desk scene again, this time 
with a simulated camera whose field of view is 142 degrees. 
These two images agree to a great extent, with the obvi- 
ous exception of the reflection through the Vertical axis, and 
demonstrate the fineness of the approximation. 

5   Conclusion 

We have exhibited a sensor design which has the ability 
to give a normal camera an ultra-wide field. These sensors 
are based on a family of mirrors derived as numerical so- 
lutions of non-linear differential equations which describe 
how a plane perpendicular to the optical axis of the system 
is distorted. By using the geometry of the mirror, the im- 
age is unwarped in an analog manner, and so requires no 
processing time, and thus these devices may be considered 
as "computational analog sensors". These sensors could be 
useful for applications such as human monitored surveil- 
lance systems and would not require a digital computer. In 

addition, if one did have a computer available, applications 
such a motion detection are simplified since the sensor will 
provide a uniform resolution image of the floor of a room, 
as opposed to a spherical or parabolic mirror in which the 
outer regions would suffer from low resolution. 
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